

Large mammal density estimation: Applications and assumptions of two emerging techniques

Random Encounter and Staying Time & Spatial Count Models

JT Fisher, JM Burgar, M Dickie, AC Burton, R Serrouya

The importance of density estimation

The importance of density estimation

Efford 2004

Spatial Capture Recapture (SCR/SECR)

Efford 2004

Spatial Capture Recapture (SCR/SECR)

• Uses individual markings

⁴⁰ ⁶⁰ ⁸⁰ Romairone et al 2018

Efford 2004

Rowcliffe et al 2008

Spatial Capture Recapture (SCR/SECR)

• Uses individual markings

Random Encounter Models (REM)

⁴⁰ ⁶⁰ ⁸⁰ Romairone et al 2018

Efford 2004

Spatial Capture Recapture (SCR/SECR) Uses individual markings Romairone et al 2018 Caravaggi et al 2016

Random Encounter Models (REM)

 Assume trapping rate scales linearly with density

Rowcliffe et al 2008

Photo credit: Franco Alo Photography

Chandler and Royle 2013

Spatial Capture (SC)

Nakashima et al 2018

Chandler and Royle 2013

Spatial Capture (SC)

• 1 • 0 2 • O 3 • O 4 00000000 300 • 0 0 0 0 0 • Northing (m) 0000 . · · · \odot 0 0 0 00 \odot 0 000 500 600 700 100 200 400

Easting (m)

Photo credit: E ranco Alio Photography

Nakashima et al 2018

Chandler and Royle 2013

Nakashima et al 2018

Photo credit: Franco Alo Photography

Chandler and Royle 2013

Random Encounter & Staying Time (REST) Spatial Capture (SC) • 1 0 2 0 3 04 • 1 • 0 2 • O 3 • O 4 00000000 0000000 200 200 Northing (m) 100m 100m 0000 . $D = \frac{\sum (N \cdot T_F)}{A_F \cdot T_O}$ 1.2 2 • • • 0 \odot 00 00 0 00 00 700 100 200 400 300 500 600 700 200 Easting (m) Easting (m) Photo credit: Franco Alo Photography

Nakashima et al 2018

Chandler and Royle 2013

Random Encounter & Staying Time (REST) Spatial Capture (SC) • 1 0 2 0 3 04 • 1 • 0 2 • O 3 • O 4 00000000 0000000 200 200 Northing (m) 100m 100m 0000 . $D = \frac{\sum (N \cdot T_{N})}{A_{F} \cdot T_{Q}}$ 7 RA • • • 0 \odot 00 00 0 00 00 700 100 200 300 400 500 600 700 200 Easting (m) Easting (m) Photo credit: Franco Alo Photography

Nakashima et al 2018

Objectives

- Compared density estimates from SC and REST models in NE Alberta
 - Model stability across years
 - Measures of precision
 - Comparison with density estimates from other sources

- Originally designed for REST
 - Random within clusters

- Originally designed for REST
 - Random within clusters
- 25 cameras in 3 clusters each
 - 2017 and 2018
- How do density estimates from the two methods compare?

- REST estimates show strong latitudinal variation
 - Especially for deer

- REST estimates show strong latitudinal variation
 - Especially for deer
 - Moose and caribou have opposite patterns

- REST estimates show strong latitudinal variation
 - Especially for deer
 - Moose and caribou have opposite patterns
 - (generally) consistent across years

- REST estimates show strong latitudinal variation
 - Especially for deer
 - Moose and caribou have opposite patterns
 - (generally) consistent across years
- SC shows consistent densities across latitudes, but yearly variation
 - Especially for deer

- REST estimates show strong latitudinal variation
 - Especially for deer
 - Moose and caribou have opposite patterns
 - (generally) consistent across years
- SC shows consistent densities across latitudes, but yearly variation
 - Especially for deer
- Both have large CIs
 - REST tends to have more variable CIs

Comparisons to alternate estimates

Aerial Surveys

- Burgar and Sztaba, 2015
- Chapman and Gilligan, 2013a
- Chapman and Gilligan, 2013b

DNA mark-recapture

• Government of Alberta

Comparisons to alternate estimates

Aerial Surveys

- Burgar and Sztaba, 2015
- Chapman and Gilligan, 2013a
- Chapman and Gilligan, 2013b

DNA mark-recapture

• Government of Alberta

"All models are wrong, but some models are useful" Box (1976)

"All models are wrong, but some models are useful" Box (1976)

Understanding assumptions is important

Assumptions

Spatial Capture (SC)

- 1. Density does not vary during sampling period
- 2. λ_0 and σ were estimated for each year, but assumed constant across space
 - vary with movement, home range size, and habitat use

- 1. Density does not vary during sampling period
- 2. Random sample of environment
 - Cameras placed randomly, but likely microhabitat selection
- 3. Perfect detection
 - Model of effective detection distance
- 4. Sample behavior randomly
 - Camera investigation likely inflates estimates

Other considerations

- Computation requirements
 - SC models can be computationally intensive
- Design assumptions
 - Random camera placement for REST vs high detection rates for SC

Conclusions

- Substantial divergence between SC and REST
 - Biological truth is unknown, making validation difficult
- Pragmatic approach for monitoring:
 - use both estimators where possible
 - consider the ecological plausibility of assumptions
- There is no silver bullet
 - How, and by how much, can we improve these estimates?

Acknowledgements

Government

WildCo

For more information about our projects, go to cmu.abmi.ca